Difference between revisions of "Set (mathematics)"
Karl Jones (Talk | contribs) (→See also) |
Karl Jones (Talk | contribs) (→See also) |
||
(One intermediate revision by the same user not shown) | |||
Line 30: | Line 30: | ||
* [[Family of sets]] | * [[Family of sets]] | ||
* [[Fuzzy set]] | * [[Fuzzy set]] | ||
+ | * [[Georg Cantor]] | ||
* [[Idempotence]] | * [[Idempotence]] | ||
* [[Identification scheme]] | * [[Identification scheme]] | ||
Line 38: | Line 39: | ||
* [[Multiset]] | * [[Multiset]] | ||
* [[Naive set theory]] | * [[Naive set theory]] | ||
+ | * [[Near sets]] | ||
* [[Permutation]] | * [[Permutation]] | ||
* [[Principia Mathematica]] | * [[Principia Mathematica]] |
Latest revision as of 09:48, 7 September 2016
In mathematics, a set is a collection of distinct mathematical objects, considered as an object in its own right.
Description
For example, the numbers 2, 4, and 6 are distinct objects when considered separately, but when they are considered collectively they form a single set of size three, written {2,4,6}.
Sets are one of the most fundamental concepts in mathematics.
Set theory
Developed at the end of the 19th century, set theory is now a ubiquitous part of mathematics, and can be used as a foundation from which nearly all of mathematics can be derived.
Mathematics education
In mathematics education, elementary topics such as Venn diagrams are taught at a young age, while more advanced concepts are taught as part of a university degree.
History
The German word Menge, rendered as "set" in English, was coined by Bernard Bolzano in his work The Paradoxes of the Infinite.
See also
- Alternative set theory
- Axiomatic set theory
- Category of sets
- Class (set theory)
- Counting
- Data set
- Dense set
- Family of sets
- Fuzzy set
- Georg Cantor
- Idempotence
- Identification scheme
- Internal set
- Mathematical object
- Mathematics
- Mereology
- Multiset
- Naive set theory
- Near sets
- Permutation
- Principia Mathematica
- Rough set
- Russell's paradox
- Sequence (mathematics)
- Set notation
- Set theory
- Space (mathematics)
- Taxonomy
- Tuple
- Universe (mathematics)
- Unique identifier
- Venn diagram
External links
- Set (mathematics) @ Wikipedia