Set (mathematics)
In mathematics, a set is a collection of distinct mathematical objects, considered as an object in its own right.
Description
For example, the numbers 2, 4, and 6 are distinct objects when considered separately, but when they are considered collectively they form a single set of size three, written {2,4,6}.
Sets are one of the most fundamental concepts in mathematics.
Set theory
Developed at the end of the 19th century, set theory is now a ubiquitous part of mathematics, and can be used as a foundation from which nearly all of mathematics can be derived.
Mathematics education
In mathematics education, elementary topics such as Venn diagrams are taught at a young age, while more advanced concepts are taught as part of a university degree.
History
The German word Menge, rendered as "set" in English, was coined by Bernard Bolzano in his work The Paradoxes of the Infinite.
See also
- Alternative set theory
- Axiomatic set theory
- Category of sets
- Class (set theory)
- Counting
- Data set
- Dense set
- Family of sets
- Fuzzy set
- Georg Cantor
- Idempotence
- Identification scheme
- Internal set
- Mathematical object
- Mathematics
- Mereology
- Multiset
- Naive set theory
- Near sets
- Permutation
- Principia Mathematica
- Rough set
- Russell's paradox
- Sequence (mathematics)
- Set notation
- Set theory
- Space (mathematics)
- Taxonomy
- Tuple
- Universe (mathematics)
- Unique identifier
- Venn diagram
External links
- Set (mathematics) @ Wikipedia