Reversible cellular automaton

From Wiki @ Karl Jones dot com
Jump to: navigation, search

A reversible cellular automaton is a cellular automaton in which every configuration has a unique predecessor.

That is, it is a regular grid of cells, each containing a state drawn from a finite set of states, with a rule for updating all cells simultaneously based on the states of their neighbors, such that the previous state of any cell before an update can be determined uniquely from the updated states of all the cells.

Description

The time-reversed dynamics of a reversible cellular automaton can always be described by another cellular automaton rule, possibly on a much larger neighborhood.

Several methods are known for defining cellular automata rules that are reversible; these include the block cellular automaton method, in which each update partitions the cells into blocks and applies an invertible function separately to each block, and the second-order cellular automaton method, in which the update rule combines states from two previous steps of the automaton.

When an automaton is not defined by one of these methods, but is instead given as a rule table, the problem of testing whether it is reversible is solvable for block cellular automata and for one-dimensional cellular automata, but is undecidable for other types of cellular automata.

Reversible cellular automata form a natural model of reversible computing, a technology that could lead to ultra-low-power computing devices.

Quantum cellular automata, one way of performing computations using the principles of quantum mechanics, are often required to be reversible. Additionally, many problems in physical modeling, such as the motion of particles in an ideal gas or the Ising model of alignment of magnetic charges, are naturally reversible and can be simulated by reversible cellular automata.

Properties related to reversibility may also be used to study cellular automata that are not reversible on their entire configuration space, but that have a subset of the configuration space as an attractor that all initially random configurations converge towards. As Stephen Wolfram writes, "once on an attractor, any system—even if it does not have reversible underlying rules—must in some sense show approximate reversibility."

See also

External links