Kolmogorov complexity
From Wiki @ Karl Jones dot com
Revision as of 13:40, 21 May 2016 by Karl Jones (Talk | contribs) (Created page with "In algorithmic information theory (a subfield of computer science and mathematics), the '''Kolmogorov complexity''' of an object, such as a piece of text, is t...")
In algorithmic information theory (a subfield of computer science and mathematics), the Kolmogorov complexity of an object, such as a piece of text, is the length of the shortest computer program (in a predetermined programming language) that produces the object as output.
Description
It is a measure of the computational resources needed to specify the object, and is also known as descriptive complexity, Kolmogorov–Chaitin complexity, algorithmic entropy, or program-size complexity.
It is named after Andrey Kolmogorov, who first published on the subject in 1963.
The notion of Kolmogorov complexity can be used to state and prove impossibility results akin to Cantor's diagonal argument, Gödel's incompleteness theorem, and Turing's halting problem.
See also
External links
- Kolmogorov complexity @ Wikipedia