Difference between revisions of "Entscheidungsproblem"

From Wiki @ Karl Jones dot com
Jump to: navigation, search
(Undecidable problem)
Line 1: Line 1:
 
In [[mathematics]] and [[computer science]], the '''''Entscheidungsproblem''''' (pronounced [ɛntˈʃaɪ̯dʊŋspʁoˌbleːm], German for 'decision problem') is a challenge posed by [[David Hilbert]] in 1928.
 
In [[mathematics]] and [[computer science]], the '''''Entscheidungsproblem''''' (pronounced [ɛntˈʃaɪ̯dʊŋspʁoˌbleːm], German for 'decision problem') is a challenge posed by [[David Hilbert]] in 1928.
 +
 +
(TO DO: organize, clarify, illustrate, cross-reference.)
 +
 +
== Description ==
  
 
The ''Entscheidungsproblem'' asks for an [[algorithm]] that takes as input a statement of a first-order logic (possibly with a finite number of axioms beyond the usual axioms of first-order logic) and answers "Yes" or "No" according to whether the statement is universally valid, i.e., valid in every structure satisfying the axioms.
 
The ''Entscheidungsproblem'' asks for an [[algorithm]] that takes as input a statement of a first-order logic (possibly with a finite number of axioms beyond the usual axioms of first-order logic) and answers "Yes" or "No" according to whether the statement is universally valid, i.e., valid in every structure satisfying the axioms.

Revision as of 15:06, 8 September 2015

In mathematics and computer science, the Entscheidungsproblem (pronounced [ɛntˈʃaɪ̯dʊŋspʁoˌbleːm], German for 'decision problem') is a challenge posed by David Hilbert in 1928.

(TO DO: organize, clarify, illustrate, cross-reference.)

Description

The Entscheidungsproblem asks for an algorithm that takes as input a statement of a first-order logic (possibly with a finite number of axioms beyond the usual axioms of first-order logic) and answers "Yes" or "No" according to whether the statement is universally valid, i.e., valid in every structure satisfying the axioms.

By the completeness theorem of first-order logic, a statement is universally valid if and only if it can be deduced from the axioms, so the Entscheidungsproblem can also be viewed as asking for an algorithm to decide whether a given statement is provable from the axioms using the rules of logic.

In 1936, Alonzo Church and Alan Turing published independent papers showing that a general solution to the Entscheidungsproblem is impossible, assuming that the intuitive notion of "effectively calculable" is captured by the functions computable by a Turing machine (or equivalently, by those expressible in the lambda calculus).

This assumption is now known as the Church–Turing thesis.

See also

External links