Difference between revisions of "Flat (geometry)"

From Wiki @ Karl Jones dot com
Jump to: navigation, search
(Created page with "In geometry, a '''flat''' is a subset of n-dimensional space that is congruent to a Euclidean space of lower dimension. == Description == The flats in...")
(No difference)

Revision as of 12:55, 24 September 2016

In geometry, a flat is a subset of n-dimensional space that is congruent to a Euclidean space of lower dimension.

Description

The flats in two-dimensional space are points and lines, and the flats in three-dimensional space are points, lines, and planes.

In n-dimensional space, there are flats of every dimension from 0 to n − 1.

Flats of dimension n − 1 are called hyperplanes.

Flats are similar to linear subspaces, except that they need not pass through the origin.

If Euclidean space is considered as an affine space, the flats are precisely the affine subspaces.

Flats are important in linear algebra, where they provide a geometric realization of the solution set for a system of linear equations.

A flat is also called a linear manifold or linear variety.

See also

External links